ISOLASI DAN KARAKTERISASI RHIZOBAKTERI YANG BERPOTENSI SEBAGAI AGEN PEMACU PERTUMBUHAN TANAMAN

Eko Hary Pudjiwati, Siti Zahara, Dewi Sartika

Abstract


Penelitian bertujuan untuk mendapatkan isolat rizobakteri yang memiliki aktifitas melarutkan fosfat, memproduksi enzim protease, dan memiliki aktifitas anti-fungal terhadap cendawan fitopatogen Fusarium oxysporum secara in vitro. Isolasi rizobakteri dilakukan di Laboratorium Perlindungan Tanaman Fakultas Pertanian Universitas Borneo Tarakan dari sampel tanah yang diambil dari daerah di sekitar Kota Tarakan, Kalimantan Utara dengan media Nutrient Agar (NA). Isolat bakteri yang diperoleh diuji keamanannya sebagai agens hayati dengan cara menumbuhkan benih timun yang telah direndam dalam suspensi bakteri. Bakteri yang aman (tidak berpotensi sebagai fitopatogen) kemudian dikarakterisasi fenotipnya dan sifat fisiologisnya. Sifat fisiologis yang diamati adalah kemampuan dalam menghasilkan enzim protease (pada media Skim Milk Agar, Merck, Germany) dan kemampuannya dalam melarutkan fosfat (pada media Pikovskaya Agar, HiMedia, India). Selanjutnya juga diuji kemampuannya dalam menghambat pertumbuhan F. oxysporum secara in vitro. Hasil penelitian meunjukkan bahwa diperoleh 35 isolat rhizobakteri yang non patogenik, 23 isolat rhizobakteri yang memiliki aktivitas proteolitik, 2 isolat rhizobakteri yang mampu melarutkan Fosfat dan tidak ada isolat rhizobakteri yang memiliki kemampuan antifungal.

Keywords


Isolat; Rhizobakteri; Agen; Pemacu Pertumbuhan Tanaman; Karakterisasi

Full Text:

PDF

References


Abraham A. G., G. Antoni L., and Añon A. C., 1993. Proteolytic Activity of Lactobacillus bulgaricus Grown in Milk, Journal of Diary Science. La Plata, Argentina.

Ahemad M, Kibret M. 2014. Mechanisms and applications of plant growth promoting rhizobacteria: current perspective. Journal of King Saud University-Science. 26(1): 1-20.

Ahmad F, Ahmad I, Khan M. 2008. Screening of free-living rhizospheric bacteria for their multiple plant growth promoting activities. Microbiological Research. 163(2): 173-181.

Asghar H, Zahir Z, Arshad M, Khaliq A. 2002. Relationship between in vitro production of auxins by rhizobacteria and their growth-promoting activities in Brassica juncea L. Biology and Fertility of Soils. 35(4): 231-237.

Beneduzi A, Ambrosini A, and Passaglia LM. 2012. Plant growth-promoting rhizobacteria (PGPR): their potential as antagonists and biocontrol agents. Genetics and Molecular Biology. 35(4): 1044-1051.

Bhattacharyya P, Jha D. 2012. Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World Journal of Microbiology and Biotechnology. 28(4): 1327-1350.

Bochner BR. 2008. Global phenotypic characterization of bacteria. FEMS Microbiology Reviews. 33(1): 191-205.

Breedt G, Labuschagne N, Coutinho T. 2017. Seed treatment with selected plant growth‐promoting rhizobacteria increases maize yield in the field. Annals of Applied Biology. 171(2): 229-236.

Buck JD. 1982. Nonstaining (KOH) method for determination of gram reactions of marine bacteria. Applied and Environmental Microbiology. 44(4): 992-993.

Caldwell BA. 2005. Enzyme activities as a component of soil biodiversity a review. Pedobiologis. 49(6): 637-644.

Castillo JD, Vivanco JM, Manter DK. 2017. Bacterial microbiome and nematode occurrence in different potato agricultural soils. Microbial Ecology. 2017(1): 1-13.

Dastager SG, Deepa C, and Pandey A. 2011. Potential plant growth-promoting activity of Serratia nematodiphila NII-0928 on black pepper (Piper nigrum L.). World Journal of Microbiology and Biotechnology. 27(2): 259-265.

Drancourt M, Bollet C, Carlioz A, Martelin R, Gayral J-P et al. 2000. 16S ribosomal DNA sequence analysis of a large collection of environmental and clinical unidentifiable bacterial isolates. Journal of Clinical Microbiology. 38(10): 3623-3630.

Drenkard and Ausubel. 2002. Pseudomonas biofilm formation and antibiotic resistence are linked to phenotypic variation. Nature. 416(6882): 740–743.

Furlan F, Saatkamp K, Volpiano CG, de Assis Franco F, dos Santos MF et al. 2017. Plant growth-promoting bacteria effect in withstanding drought in wheat cultivars. Scientia Agraria. 18(2): 104-113.

Garcı́a JAL, Domenech J, Santamarı́a C, Camacho Ma, Daza A et al. 2004. Growth of forest plants (pine and holm-oak) inoculated with rhizobacteria: relationship with microbial community structure and biological activity of its rhizosphere. Environmental and Experimental Botany. 52(3): 239-251.

Gupta G, Parihar SS, Ahirwar NK, Snehi SK, Singh V. 2015. Plant growth promoting rhizobacteria (PGPR): current and future prospects for development of sustainable agriculture. Journal of Microbiology and Biochemical Technology. 7(2): 096-102.

Joseph B, Ranjan Patra R, Lawrence R. 2012. Characterization of plant growth promoting rhizobacteria associated with chickpea (Cicer arietinum L.). International Journal of Plant Production. 1(2): 141-152.

Karim H, Kuswinanti T, Rosmana A, Rasyid B. 2015.

Effectiveness of fungal and bacterial isolates from rhizosphere of passion fruits againts Fusarium oxysporum f. sp passiflorae in Vitro. International Journal of Agriculture System. 1(2): 120-126.

Lecomte C, Alabouvette C, Edel-Hermann V, Robert F, Steinberg C. 2016. Biological control of ornamental plant diseases caused by Fusarium oxysporum: a review. Biological Control. 101(1): 17-30.

Liu K, Newman M, McInroy JA, Hu C-H, Kloepper JW. 2017. Selection and assessment of plant growth-promoting rhizobacteria (PGPR) for biological control of multiple plant diseases. Phytopathology. 107(8): 928-936.

Lopez BR, Bashan Y, Bacilio M. 2011. Endophytic bacteria of Mammillaria fraileana, an endemic rock-colonizing cactus of the southern Sonoran Desert. Archives of Microbiology. 193(7): 527-541.

Mahartha, K.A., Khalimi, K. & Wirya, G.N.A.S. 2013. Uji Efektivitas Rhizobakteri sebagai Agen Antagonis terhadap

Fusarium oxysporum f.sp. capsici Penyebab Penyakit Layu Fusarium pada Tanaman Cabai Rawit (Capsicum frutescens L.). E-Jurnal Agroekoteknologi Tropika. 2 (3): 145-154.

Meena KS, Ramyabharathi S, Raguchander T, Jonathan E. 2015. Meloidogyne incognita and Fusarium oxysporum interaction in Gerbera. African Journal of Microbiology Research. 9(18): 1281-1285.

Meena KS, Ramyabharathi S, Raguchander T, Jonathan E. 2016. Interaction of Meloidogyne incognita and Fusarium oxysporum in carnation and physiological changes induced in plants due to the interaction. SAARC Journal of Agriculture. 14(1): 59-69.

Nelson LM. 2004. Plant growth promoting rhizobacteria (PGPR): Prospects for new inoculants. Crop Management. 3(1): 121-128.

Nurulhuda M, Latiffah Z, Baharuddin S, Maziah Z. 2009. Diversity of fusarium species from vegetable fruits. Journal Malaysian Applied Biology. 38(1): 43-47.

Pailin T, Kang D, Schmidt K, Fung D. 2001. Detection of extracellular bound proteinase in EPS‐producing lactic acid bacteria cultures on skim milk agar. Letters in Applied Microbiology. 33(1): 45-49.

Paramanandham P, Rajkumari J, Pattnaik S, Busi S. 2017. Biocontrol potential against Fusarium oxysporum f. sp. lycopersici and Alternaria solani and tomato plant growth due to plant growth–promoting rhizobacteria. International Journal of Vegetable Science. 23(4): 1-10.

Penrose DM, Glick BR. 2003. Methods for isolating and characterizing ACC deaminase‐containing plant growth‐promoting rhizobacteria. Physiologia Plantarum. 118(1): 10-15.

Pigliucci. 1996. How Organisms Respond to Environmental Changes: From Phenotypes to Molecules (and Vice Versa). Trends in Ecology and Evolution. 11:168-173.30.

Ploetz RC. 2006. Fusarium wilt of banana is caused by several pathogens referred to as Fusarium oxysporum f. sp. cubense. Phytopathology. 96(6): 653-656.

Pradana AP. 2016. Konsorsium bakteri endofit sebagai agens biokontrol nematoda puru akar Meloidogyne incognita pada tomat. Tesis. Institut Pertanian Bogor. Bogor.

Purwaningsih S. 2009. Populasi Bakteri Rhizobium di Tanah pada Beberapa Tanaman dari Pulau Buton. Jurnal Tanah Tropika. 14(1): 65-70.

Rubin RL, van Groenigen KJ, Hungate BA. 2017. Plant growth promoting rhizobacteria are more effective under drought: a meta-analysis. Plant and Soil. 416(1): 1-15.

Suriadikarta dan Simanungkalit, 2006. Pupuk Organik dan Pupuk Hayati. Balai Besar Penelitian dan Pengembangan Sumberdaya Lahan Pertanian. Bogor. http//balittanah.litbang.deptan.go.id.

Sadras V, Richards R. 2014. Improvement of crop yield in dry environments: benchmarks, levels of organisation and the role of nitrogen. Journal of Experimental Botany. 65(8): 1981-1995.

Thakuria, D., N.C. Talukdar, C. Goswami, S. Hazarika, R.C.Boro, M.R. Khan. 2004. Characterization and screening of bacteria from rhizosphere of rice grown in acidic soils of Assam. Current Sci. 86:978-985.

Williamson, R.M., M. Primig, Brian K.W., Elizabeth A.W., Michel B., Cyril S de Menthiere, Ronald W.D., and Rochele E.E. 2002. The Ume6 regulon coordinates metabolic and meiotic gene expression in yeast. PNAS. October 15, 2002. 99(21): 13431-13436. https://doi.org/10.1073/pnas.202495299.

Xiang Lu, Xuan Zhou, Yu Cao, Meixue Zhou, David McNeil, Shan Liang, and Chengwei Yang. 2017. RNA-seq Analysis of Cold and Drought Responsive Transcriptomes of Zea mays ssp. mexicana L. Frontiers in Plant Science. 8:136. doi:10.3389/fpls.2017.00136.




DOI: https://doi.org/10.35334/borneo_saintek.v2i2.1084

Refbacks

  • There are currently no refbacks.


Copyright (c) 2019 Jurnal Borneo Saintek

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.