Pengaruh Air Laut pada Kualitas Paving Block untuk Aplikasi Non-Struktural
Abstract
Penggunaan air tawar dalam industri konstruksi, termasuk dalam pembuatan paving block, menghadapi tantangan besar akibat keterbatasan sumber daya air tawar di banyak wilayah. Penelitian ini bertujuan untuk mengevaluasi potensi penggunaan air laut sebagai alternatif pengganti air tawar dalam proses pencampuran dan perawatan paving block, terutama untuk aplikasi non-struktural di daerah pesisir. Metode penelitian melibatkan empat jenis campuran paving block: AT-AT (pencampuran dan perawatan dengan air tawar), AT-AL (pencampuran dengan air tawar dan perawatan dengan air laut), AL-AT (pencampuran dengan air laut dan perawatan dengan air tawar), dan AL-AL (pencampuran dan perawatan dengan air laut). Pengujian dilakukan pada umur benda uji 28 dan 91 hari untuk mengevaluasi kuat tekan, daya serap air, porositas, ketahanan terhadap larutan asam, dan nilai resistivitas listrik. Hasil penelitian menunjukkan bahwa campuran AT-AT memiliki kualitas terbaik dengan kuat tekan tertinggi, porositas dan daya serap air terendah, serta ketahanan optimal terhadap lingkungan asam dan korosi. Campuran AL-AT juga menunjukkan performa baik dengan electrical resistivity tinggi dan penurunan porositas signifikan, menjadikannya layak untuk aplikasi di wilayah pesisir. Meskipun campuran AL-AL menunjukkan peningkatan porositas dan penurunan ketahanan terhadap asam, hasil resistivitasnya tetap memadai untuk aplikasi non-struktural ringan. Temuan ini mengindikasikan bahwa air laut dapat digunakan sebagai alternatif yang ekonomis dalam pembuatan dan perawatan paving block di daerah dengan keterbatasan air tawar, tanpa mengorbankan kualitas secara signifikan untuk aplikasi non-struktural.
Keywords
Full Text:
PDFReferences
Bodur, B., Bayraktar, O. Y., Benli, A., Kaplan, G., Tobbala, D. E., & Tayeh, B. (2023). Effect of using wastewater from the ready-mixed concrete plant on the performance of one-part alkali-activated GBFS/FA composites: Fresh, mechanical and durability properties. Journal of Building Engineering, 76, 107167.
Cai, Y., Xuan, D., Hou, P., Shi, J., & Poon, C. S. J. C. (2021). Effects of seawater mixing on water hydration behavior of tricalcium aluminate. Construction Research, 149, 106565.
Cornforth, D. H. 2005. Landslides in Practice Investigation, Analysis, and Remedial/Preventative Options in Soils. New Jersey: John Wiley and Sons, Inc., hal. 10 – 15.
Dasar, A., Patah, D., Hamada, H., Sagawa, Y., & Yamamoto, D. (2020). Applicability of seawater as a mixing and curing agent in 4-year-old concrete. Construction and Building Materials, 259, 119692.
Dasar, A., Patah, D., Hamada, H., Yamamoto, D., & Sagawa, Y. (2022, December). Life performance of 40-year-old RC beams with different concrete covers and bar diameters in natural corrosion environments. In Structures (Vol. 46, pp. 2031-2046). Elsevier.
Datta, S. D., Sobuz, M. H. R., Sutan, N. M., & Islam, S. (2023). Structural sustainable recycled aggregate concrete production under environmental conditions. International Journal of Integrated Engineering, 15(9), 64–71.
Ellien, A. R., Etman, Z. A., & Nasser, A. A. (2023). Enhancement of concrete mixed or cured with seawater using fly ash and metakaolin. Engineering Research Journal, 46(1), 133–142.
Faried, A. S., Mostafa, S. A., Tayeh, B. A., & Tawfik, T. A. (2021). Mechanical and durability properties of ultra-high performance concrete incorporated with various nano waste materials under different curing conditions. Journal of Building Engineering, 43, 102569.
Ghorab, H. Y., Hilal, M. S., & Antar, A. (1990). Effect of mixing and curing waters on the behaviour of cement pastes and concrete Part 2: Properties of cement paste and concrete. Cement and Concrete Research, 20(1), 69–72.
Khatibmasjedi, M., Ramanathan, S., Suraneni, P., & Nanni, A. J. A. M. J. (2020). Compressive strength development of seawater-mixed concrete subject to different curing regimes. Advanced Materials Journal, 117(5).
Mehta, P. K., dkk (2015). Concrete: Microstructure, Properties, and Materials. McGraw-Hill Education.
Mishra, A. dkk (2014). "Influence of Mixing and Curing Conditions on the Compressive Strength of Concrete Made with Seawater." Construction and Building Materials.
Neville, A. M. (1995). Properties of Concrete. Longman Group.
Olutoge, F. A., & Amusan, G. M. J. I. J. E. S. I. (2014). Effect of seawater on compressive strength of concrete. Construction, 3(7), 23–31.
Patah, D., & Dasar, A. (2022, September). Strength Performance of Concrete Using Rice Husk Ash (RHA) as Supplementary Cementitious Material (SCM). In Journal of The Civil Engineering Forum (pp. 261-276).
Patah, D., & Dasar, A. (2023, September). The Impact of using Rice Husks Ash, Seawater and Sea Sand on Corrosion of Reinforcing Bars in Concrete. In Journal of the Civil Engineering Forum (pp. 251-262).
Patah, D., Dasar, A., & Nurdin, A. (2022). Durabilitas Baja Tulangan pada Beton Menggunakan Material Batu Gamping, Pasir Laut dan Air Laut dalam Campuran Beton. Media Komunikasi Teknik Sipil, 28(1), 109-117.
Patah, D., Dasar, A., Apriansyah, A., & Caronge, M. A. (2023, July). Strength development of seawater mixed and cured concrete with various replacement ratios of fly ash. In Materials Science Forum (Vol. 1091, pp. 111-118). Trans Tech Publications Ltd.
Saha, A., Tonmoy, T. M., Sobuz, M. H. R., Aditto, F. S., & Mansour, W. (2024). Assessment of mechanical, durability and microstructural performance of sulphate-resisting cement concrete over portland cement in the presence of salinity. Construction and Building Materials, 420, 135527.
Shabakhty, N., Karimi, H. R., & Bakhtiary, A. Y. (2024). Cementitious composites in aquatic environments: Evaluation of fracture and mechanical behavior in long-term submerging in fresh and saltwater, and simulated splash zone conditions. Case Studies in Construction Materials, 20, e03035.
Tang, Y. dkk (2019). "Feasibility of Using Seawater in Non-structural Concrete: Impacts on Compressive Strength and Durability." Journal of Civil Engineering Research.
Tayeh, B. A., Hamada, H. M., Almeshal, I., & Bakar, B. A. (2022). Durability and mechanical properties of cement concrete comprising pozzolanic materials with alkali-activated binder: A comprehensive review. Case Studies in Construction Materials, e01429.
Vishwakarma, A., Rai, A., & Patel, A. (2020). Effect of salt water on compressive strength, flexural strength and durability of concrete. International Research Journal of Engineering and Technology, 7, 106–109.
Wang, J., Liu, E., & Li, L. J. C. B. (2018). Multiscale investigation of hydration mechanics of seawater OPC paste. Construction and Building Materials, 191, 891–903.
Wang, J., Xie, J., Wang, Y., Liu, Y., & Ding, Y. J. C. (2020). Rheological properties, compressive strength, and hydration products of seawater-mixed cement pastes. Composites, 114, 103770
Xiao, J., Qiang, C., Nanni, A., & Zhang, K. (2017). Use of sea-sand and seawater in concrete construction: Current status and future opportunities. Construction and Building Materials, 155, 1101–1111.
Yang, Y. dkk (2018). "Effects of Seawater and Salt on Concrete: A Comprehensive Review." Journal of Materials Science Research.
Younis, A., Ebead, U., Suraneni, P., & Nanni, A. (2018). Fresh and hardened properties of seawater-mixed concrete. Construction and Building Materials, 190, 276–286.
Zhao, Y., Hu, X., Shi, C., Zhang, Z., & Zhu, D. (2021). A review on seawater sea-sand concrete: Mixture proportion, hydration, microstructure and properties. Construction and Building Materials, 295, 123602.
DOI: https://doi.org/10.35334/be.v8i3.5993
Copyright (c) 2024 Borneo Engineering : Jurnal Teknik Sipil
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Published By : Civil Engineering Department, Faculty of Engineering, University of Borneo Tarakan Jl. Amal Lama No 1, Tarakan 77115, Indonesia | All publications by Borneo Engineering: Jurnal Teknik Sipil are licensed under a |
Borneo Engineering Indexed By: