REKONFIGURASI JARINGAN PADA SISTEM DISTRIBUSI RADIAL UNTUK MEREDUKSI RUGI-RUGI DAYA MENGGUNAKAN ALGORITMA GENETIKA ADAPTIF

Patria Julianto

Abstract


Pada sistem distribusi tenaga listrik, bentuk yang paling umum digunakan adalah radial. Jaringan distribusi dengan bentuk radial menghasilkann rugi-rugi daya dan rugi-rugi tegangan yang lebih besar dibandingkan dengan jaringan distribusi bentuk lain. Untuk mereduksi rugi-rugi daya dan meningkatkan profil tegangan, salah satu metode yang umum digunakan adalah rekonfigurasi jaringan. Permasalahan utama pada rekonfigurasi jaringan sistem distribusi radial adalah menentukan konfigurasi yang tepat agar sistem distribusi mempunyai rugi-rugi yang paling kecil tetapi konfigurasi jaringan distribusi tetap dalam keadaan radial. Pada penelitian ini, metode algoritma genetika adaptif (AGA) digunakan untuk mendapatkan konfigurasi jaringan distribusi yang optimal. Dengan metode AGA, performa pencarian ditingkatkan dengan membuat proses probabilitas crossover dan mutasi menjadi adaptif untuk mencegah terjadinya konvergensi prematur. Simulasi untuk penelitian ini telah berhasil dicoba pada sistem distribusi 69-bus dengan hasil sebelum rekonfigurasi jaringan, rugi-rugi daya sebesar 225,0167 kW dan setelah dilakukan rekonfigurasi jaringan, rugi-rugi daya menjadi 100,1742 kW. Terdapat reduksi rugi-rugi daya sebesar 124,8425 kW (55,48%). Sedangkan untuk tegangan dan faktor daya terjadi kenaikan yang cukup signifikan setelah dilakukan rekonfigurasi jaringan.

Keywords


jaringan distribusi radial, rekonfigurasi jaringan, algoritma genetika adaptif, rugi-rugi daya

Full Text:

PDF

References


S. Civanlar, J. J. Grainger, and S. S. H. Le, Distribution feeder reconfiguration for loss reduction, IEEE Transactions on Power Delivery, 3,3:1217–1223(1988).

M. E. Baran and F.F. Wu, Network reconfiguration in distribution systems for loss reduction and load balancing, IEEE Transactions on Power Delivery, 4,2:1401–1407(1989).

J. Y. Fan, L. Zhang, and J. D. McDonald, Distribution network reconfiguration: Single loop optimization, IEEE Transactions on Power Syst., 11,3:1643–1647(1996).

S. K. Goswami and S. K. Basu, A new algorithm for the reconfiguration of distribution feeders for loss minimization, IEEE Transactions on Power Delivery, 7,3: 1484–1491(1992).

H. D. Chiang and R. M. Jean-Jumeau, Optimal network reconfiguration distribution system: Part 1: A new formulation and a solution methodology, IEEE Transactions on Power Delivery, 5,4:1902–1909(1990).

H. C. Cheng and C. C. Kou, Network reconfiguration in distribution systems using simulated annealing, Electical Power System Research, 29,3:227–238(1994).

Y. J. Jean and J. C. Kim, An efficient simulated annealing algorithm for network reconfiguration in large-scale distribution systems, IEEE Transactions on Power Delivery, 17,4:1070–1078(2002).

K. Nara, A. Shiose, M. Kitagawoa, and T. Ishihara, Implementation of genetic algorithm for distribution systems loss minimum reconfiguration, IEEE Transactions on Power System, 7,3:1044–1051(1992).

W. M. Lin, F. S. Cheng, and M. T. Tsay, Distribution feeder reconfiguration with refined genetic algorithm, Proceedings Inst. Electrical Engineering, Generation, Transmission, Distribution, 147,6: 349–354(2000).

Y. C. Huang, Enhanced genetic algorithm-based fuzzy multi-objective approach to distribution network reconfiguration, Proceedings Inst. Electrical Engi-neering, Generation, Transmission, Distribution, 149,5: 615–620(2002).

D. Jiang and R. Baldick, Optimal electric distribution system switch reconfiguration and capacitor control, IEEE Transactions on Power System, 11,2:890–897 (1996).

C. T. Su and C. S. Lee, Feeder reconfiguration and capacitor setting for loss reduction of distribution systems, Electical Power System Research, 58,2:97–102(2001).

Z. Rong, P. Xiyuan, and H. Jinliang, Reconfiguration and capacitor placement for loss reduction of distribution system, Proceeding IEEE TENCON’02, 1945–1949 (2002).

M. Srinivas and L. M. Patnaik, Adaptive probabilities of crossover and mutation in genetic algorithms, IEEE Transactons on System, Man, and Cybernetic, 24,4:656–666.

D. Zhang, Z. Fu, L. Zhang, Joint optimization for power loss reduction in distribution systems, IEEE Transactions on Power System, 23,1:161-169(2008).

Timothy J. E. Miller, Reactive Power Control in Electric System, Wiley Interscience, ISBN: 0471-86933-3, New York (1982).

Goldberg, D.E., Genetic Algorithm in Search, Optimization and Machine Learning, Reading, John Wiley & Sons, Inc. (1996).

Kusumadewi, Sri, Artificial Intelligence (Teknik dan Aplikasinya)â€, Graha Ilmu, Yogyakarta (2003).

Hadi Saadat, Power System Analysis, McGraw-Hill ISBN: 0-07-561634-3, New York (1999).

P. Julianto, A. Soeprijanto, Mardlijah, Dynamic Economic Load Dispatch by Introducing Compressed Air Energy Storage for Solving Duck curve, International Seminar on Intelligent Technology and Its Applications (ISITIA), Surabaya. 129-134(2020).

P. Julianto, A. Soeprijanto, Mardlijah, Dynamic Economic Dispatch with Integration of Compressed Air Energy Storage Considering Large Penetration of Photovoltaic Generation Systems, International Review on Modelling and Simulations (IREMOS), 14,5:388-398(2021).

P. Julianto, A. Soeprijanto, Mardlijah, Confronting the Duck curve Problem using Dynamic Economic Emission Dispatch with CAESâ€, International Journal of Intelligent Engineering and Systems, 15,4:520-532(2022).

P. Julianto, Unit Commitment Dengan Integrasi Pump Storage Hydroelectricity Untuk Mengatasi Masalah Duck Curve, Jurnal: Elektrika Borneo (JEB), 8,2:12-17(2022).




DOI: https://doi.org/10.35334/eb.v9i1.3578

Refbacks

  • There are currently no refbacks.


Address:

Gedung D Lt. 3 Kampus Universitas Borneo Tarakan. Jl. Amal Lama No. 1, Tarakan, Kalimantan Utara, Indonesia. Kodepos: 77123.

Email:elektrika@borneo.ac.id
Hp :+62 813-5064-4775

 

All Publications

by JEB (Jurnal Elektrika Borneo)

are licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License