IN VITRO STUDY OF PHYLLOSPHERE BACTERIA AS PROMISING BIOCONTROL AGENTS AGAINST BACTERIAL LEAF BLIGHT DISEASE (Xanthomonas oryzae pv. oryzae) IN RICE PLANTS

Rachmi Masnilah, Fenny Nurmala, Ankardiansyah Pandu Pradana

Abstract


This study aimed to explore the potential of phyllosphere bacterial isolates as biological control agents against Xanthomonas oryzae pv. oryzae (Xoo). We isolated a strain exhibiting typical morphological and biochemical characteristics of Xoo, such as a yellowish, spherical colony, Gram-negative, and starch hydrolyzing ability. This isolate was shown to cause necrotic lesions on rice leaves, corroborating its pathogenic nature. Subsequently, we isolated ten diverse phyllosphere bacteria from rice plants. These isolates were characterized based on various morphological and biochemical attributes including colony shape, margin appearance, color, growth time, and the ability to fluoresce under UV light when cultivated on King's B medium. Crucially, none of these isolates induced a hypersensitive response in tobacco leaves, an initial indicator of their potential as safe biological control agents. In an antagonistic assay against Xoo, all the phyllosphere isolates demonstrated varying levels of inhibition, suggesting their potential role in biological control. Two isolates, PGM1 and PGM4, exhibited the highest antagonistic effects against Xoo. These findings provide preliminary evidence for the potential use of these phyllosphere isolates in managing bacterial leaf blight in rice, warranting further research to confirm their efficacy and safety under field conditions.


Full Text:

PDF

References


Ji Z, Wang C & Zhao K. 2018. Rice routes of countering Xanthomonas oryzae. International Journal of Molecular Sciences 19(10): 3008.

Berry EM, Dernini S, Burlingame B, Meybeck A & Conforti P. 2015. Food security and sustainability: can one exist without the other?. Public Health Nutrition 18(13): 2293-2302.

Dunger G, Llontop E, Guzzo CR & Farah CS. 2016. The Xanthomonas type IV pilus. Current Opinion in Microbiology 30: 88-97.

Nakayinga R, Makumi A, Tumuhaise V & Tinzaara W. 2021. Xanthomonas bacteriophages: A review of their biology and biocontrol applications in agriculture. BMC Microbiology 21(1): 1-20.

Patil B, Jagadeesh G, Karegowda C, Naik S & Revathi R. 2017. Management of bacterial leaf blight of rice caused by Xanthomonas oryzae pv. oryzae under field condition. Journal of Pharmacognosy and Phytochemistry 6(6): 244-246.

Quibod IL, Atieza-Grande G, Oreiro EG, Palmos D, Nguyen MH, Coronejo ST, Aung EE, Nugroho C, Roman-Reyna V & Burgos MR. 2020. The Green Revolution shaped the population structure of the rice pathogen Xanthomonas oryzae pv. oryzae. The ISME Journal 14(2): 492-505.

Arshad HMI, Naureen S, Saleem K, Ali S, Jabeen T & Babar MM. 2015. Morphological and biochemical characterization of Xanthomonas oryzae pv. oryzae isolates collected from Punjab during 2013. Advancements in Life Sciences 2(3): 125-130.

Jiang N, Yan J, Liang Y, Shi Y, He Z, Wu Y, Zeng Q, Liu X & Peng J. 2020. Resistance genes and their interactions with bacterial blight/leaf streak pathogens (Xanthomonas oryzae) in rice (Oryza sativa L.)—an updated review. Rice 13(1): 1-12.

Krishanti N, Wahyudi A & Nawangsih AA. 2015. Non-pathogenic phyllosphere bacteria producing bioactive compounds as biological control of Xanthomonas oryzae pv oryzae. International Journal of Pharma and Bio Sciences 6(1): 7-15.

Saleem M, Meckes N, Pervaiz ZH & Traw MB. 2017. Microbial interactions in the phyllosphere increase plant performance under herbivore biotic stress. Frontiers in Microbiology 8: 41.

Widjayanti T, Kusuma RR, Aini LQ, Fitriani CDA, Sektiono AW, Hadi MS & Setiawan Y. 2023. Screening of phyllospheric and endophytic bacteria as biocontrol agents of Xanthomonas oryzae pv. oryzae. Biodiversitas 24(4): 73-80.

da Silva JC, da Silva Júnior TAF, Soman JM, do Nascimento DM, de Melo LL, Oliveira LR, Sartori MMP & Maringoni AC. 2021. Survival of Xanthomonas campestris pv. campestris in the phyllosphere and rhizosphere of crops. Plant and Soil 462(389): 403-408.

Prabawati A, Susilowati A & Sugiyarto S. 2019. Phyllosphere bacteria as a candidate of biocontrol agents against Xanthomonas oryzae pv. oryzae (Xoo) causes bacterial blight disease. Prosiding Seminar Nasional Masyarakat Biodiversitas Indonesia: 256-262.

Orynbayev AT, Dzhalilov FSU & Ignatov AN. 2020. Improved efficacy of formulated bacteriophage in control of black rot caused by Xanthomonas campestris pv. campestris on cabbage seedlings. Archives of Phytopathology and Plant Protection 53(7-8): 379-394.

Dewi RK, Suranto AS & Wahyudi AT. 2021. Bioactive compounds of rice phyllosphere bacteria that are antagonistic toward Xanthomonas oryzae pv. oryzae. Evolution 25(4): 14.

Koskella B. 2020. The phyllosphere. Current Biology 30(19): R1143-R1146.

Holtappels D, Fortuna K, Lavigne R & Wagemans J. 2021. The future of phage biocontrol in integrated plant protection for sustainable crop production. Current Opinion in Biotechnology 68: 60-

Nurcahyanti SD, Wahyuni WS, Masnilah R & Nurdika AAH. 2021. Diversity of Bacillus spp. from soybean phyllosphere as potential antagonist agents for Xanthomonas axonopodis pv. glycines causal of pustule disease. Biodiversitas 22(11): 72-80.

Singh N & Siddiqui ZA. 2015. Effects of Bacillus subtilis, Pseudomonas fluorescens and Aspergillus awamori on the wilt-leaf spot disease complex of tomato. Phytoparasitica 43: 61-75.

Wu L, Wu H, Chen L, Yu X, Borriss R & Gao X. 2015. Difficidin and bacilysin from Bacillus amyloliquefaciens FZB42 have antibacterial activity against Xanthomonas oryzae rice pathogens. Scientific Reports 5(1): 12975.

Chandrasekaran M & Chun SC. 2016. Induction of defence-related enzymes in tomato (Solanum lycopersicum) plants treated with Bacillus subtilis CBR05 against Xanthomonas campestris pv. vesicatoria. Biocontrol Science and Technology 26(10): 1366-1378.

Jabeen R, Iftikhar T & Batool H. 2012. Isolation, characterization, preservation and pathogenicity test of Xanthomonas oryzae pv. oryzae causing BLB disease in rice. Pakistan Journal of Botany 44(1): 261-265.

Gregersen T. 1978. Rapid method for distinction of Gram-negative from Gram-positive bacteria. European Journal of Applied Microbiology and Biotechnology 5: 123-127.

Munif A, Nursalim M & Pradana AP. 2021. The potential of endophytic bacteria isolated from Tagetes sp. to control Meloidogyne spp. infection on tomato plants. Biodiversitas 22(6): 45-51.

Evans J, Klesius P & Shoemaker C. 2004. Starch hydrolysis testing of multiple isolates for rapid differentiation of Streptococcus iniae. Bulletin-European Association of Fish Pathologists 24(5): 231-239.

DeBritto S, Gajbar TD, Satapute P, Sundaram L, Lakshmikantha RY, Jogaiah S & Ito S-i. 2020. Isolation and characterization of nutrient dependent pyocyanin from Pseudomonas aeruginosa and its dye and agrochemical properties. Scientific Reports 10(1): 1542.

Mitrev S, Karov I, Kovacevik B & Kostadinovska E. 2014. Pseudomonas population causing tomato pith necrosis in the Republic of Macedonia. Journal of Plant Pathology 96(3): 589-592.

Syofiana RVT & Masnilah R. 2019. Eksplorasi Bacillus spp. pada beberapa rhizosfer gulma dan potensinya sebagai agens pengendali hayati patogen tanaman secara in vitro. Jurnal Bioindustri 2(1): 349-363.

Masnilah R, Astono TH & Aini LQ. 2013. Karakterisasi bakteri penyebab penyakit hawar daun edamame di Jember. Berkala Ilmiah Pertanian 1(1): 10-14.

Zhang H, Liu Y, Nie X, Liu L, Hua Q, Zhao G-P & Yang C. 2018. The cyanobacterial ornithine–ammonia cycle involves an arginine dihydrolase. Nature Chemical Biology 14(6): 575-581.

Suárez-Estrella F, Jurado M, López M, López-González J & Moreno J. 2019. Role of bacteria isolated from a plant waste-based compost producing bioactive substances in the control of bacterial spot syndrome caused by Xanthomonas campestris pv. vesicatoria. Biocatalysis and Agricultural Biotechnology 20: 101198.

Drauch V, Ibesich C, Vogl C, Hess M & Hess C. 2020. In-vitro testing of bacteriostatic and bactericidal efficacy of commercial disinfectants against Salmonella infantis reveals substantial differences between products and bacterial strains. International Journal of Food Microbiology 328: 108660.

Jonit N, Low Y & Tan G. 2016. Xanthomonas oryzae pv. oryzae, biochemical tests, rice (Oryza sativa), bacterial leaf blight (BLB) disease, Sekinchan. Applied Environmental Microbiolology 4: 63-69.

Nawaz A, Tariq JA, Lodhi AM & Memon RM. 2020. Studies on characteristics of Xanthomonas oryzae isolates associated with Rice crop. Journal of Applied Research in Plant Sciences 1(1): 30-35.

Pradana AP, Putri D & Munif A. 2015. Eksplorasi bakteri endofit dari akar tanaman adam hawa dan potensinya sebagai agens hayati dan pemacu pertumbuhan tanaman padi. Jurnal Fitopatologi Indonesia 11(3): 73-78.

Sánchez-Romero MA & Casadesús J. 2020. The bacterial epigenome. Nature Reviews Microbiology 18(1): 7-20.

Ghssein G & Ezzeddine Z. 2022. A review of Pseudomonas aeruginosa metallophores: Pyoverdine, pyochelin and pseudopaline. Biology 11(12): 1711.

Huang H-E, Ger M-J, Yip M-K, Chen C-Y, Pandey A-K & Feng T-Y. 2004. A hypersensitive response was induced by virulent bacteria in transgenic tobacco plants overexpressing a plant ferredoxin-like protein (PFLP). Physiological and Molecular Plant Pathology 64(2):

-110.

Aleklett K, Leff JW, Fierer N & Hart M. 2015. Wild plant species growing closely connected in a subalpine meadow host distinct root-associated bacterial communities. PeerJ 3: e804.

Santoyo G, Pacheco CH, Salmerón JH & León RH. 2017. The role of abiotic factors modulating the plant-microbe-soil interactions: toward sustainable agriculture. A review. Spanish Journal of Agricultural Research 15(1): 13.

Mandal M, Das S, Roy A, Rakwal R, Jones OA, Popek R, Agrawal GK & Sarkar A. 2023. Interactive relations between plants, phyllosphere microbial community, and particulate matter pollution. Science of The Total Environment 67(1): 164352.

Yasmin S, Hafeez FY, Mirza MS, Rasul M, Arshad HM, Zubair M & Iqbal M. 2017. Biocontrol of bacterial leaf blight of rice and profiling of secondary metabolites produced by rhizospheric Pseudomonas aeruginosa BRp3. Frontiers in Microbiology 8: 1895.

Ren H, Gu G, Longa J, Yin Q, Wu T, Song T, Zhang S, Chen Z & Dong H. 2006. Combinative effects of a bacterial type-III effector and a biocontrol bacterium on rice growth and disease resistance. Journal of Biosciences 31: 617-627.

Van Hop D, Hoa PTP, Quang ND, Ton PH, Ha TH, Van Hung N, Van NT, Van Hai T, Quy NTK & Dao NTA. 2014. Biological control of Xanthomonas oryzae pv. oryzae causing rice bacterial blight disease by Streptomyces toxytricini VN08-A-12, isolated from soil and leaf-litter samples in Vietnam. Biocontrol Science 19(3): 103-111.

Rahma H, Trisno J & Shafira S. 2023. Potential of actinobacteria as biocontrol agents to Xanthomonas oryzae pv. oryzae in vitro. IOP Conference Series: Earth and Environmental Science 532: 012040.

Pliego C, Ramos C, de Vicente A & Cazorla FM. 2011. Screening for candidate bacterial biocontrol agents against soilborne fungal plant pathogens. Plant and Soil 340: 505-520.

Sahu B, Singh J, Shankar G & Pradhan A. 2018. Pseudomonas fluorescens PGPR bacteria as well as biocontrol agent: A review. International Journal of Chemical Studies 6(2): 01-07.

Araya MA, Valenzuela T, Inostroza NG, Maruyama F, Jorquera MA & Acuña JJ. 2020. Isolation and characterization of cold-tolerant hyper-ACC-degrading bacteria from the rhizosphere, endosphere, and phyllosphere of antarctic vascular plants. Microorganisms 8(11):




DOI: https://doi.org/10.35334/jpen.v6i2.4094

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 J-PEN Borneo : Jurnal Ilmu Pertanian

      P-ISSN :                         E-ISSN :                                  Affiliation :

                           


Creative Commons License
All publications in J-PEN Borneo : Jurnal Ilmu Pertanian are licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.