Perancangan Sistem Informasi Eksekutif untuk Meningkatkan Performa Kinerja Pemeriksaan Risiko Kesehatan Ibu Hamil pada Klinik Kebidanan dan Penyakit Kandungan
Abstract
Abstract: Based on WHO data in 2020, it was found that around 287,000 women died during and after pregnancy, especially in low-income countries. The measurement of maternal mortality rate (MMR) becomes the focus with the implementation of early detection system of pregnancy risk. The development of an Executive Information System (EIS) in the form of dashboard management can support decision making and health monitoring of pregnant women in obstetrics and gynecology clinics. The methods used are dataset preparation, analysis using SQL, and dashboard design. The results show that the EIS can provide a statistical overview of the risks of pregnant women, facilitate multivariate and bivariate analysis, and map the geographical distribution of risks in Indonesia. This study concludes that EIS in the form of dashboard management can be an effective solution to improve the performance of pregnant women's health performance by supporting fast and accurate
decision making.
Abstrak: Berdasarkan data WHO tahun 2020, ditemukan bahwa sekitar 287.000 perempuan meninggal selama dan setelah kehamilan, terutama di negara-negara berpendapatan rendah. Pengukuran Angka Kematian Ibu (AKI) menjadi fokus dengan implementasi sistem deteksi dini risiko kehamilan. Pengembangan Sistem Informasi Eksekutif (EIS) berupa manajemen dashboard dapat mendukung pengambilan keputusan dan pemantauan kesehatan ibu hamil di klinik kebidanan dan kandungan. Metode yang digunakan yaitu persiapan dataset, analisis menggunakan SQL, dan desain dashboard. Hasilnya menunjukkan bahwa EIS dapat memberikan gambaran statistik risiko ibu hamil, memfasilitasi analisis multivariant dan bivariate serta memetakan distribusi geografis risiko di Indonesia. Penelitian ini menyimpulkan bahwa EIS berbentuk manajemen dashboard dapat menjadi solusi efektif untuk meningkatkan performa kinerja kesehatan ibu hamil dengan mendukung pengambilan
keputusan cepat dan akurat.
Keywords
Full Text:
PDFReferences
Apriliasari, D. T., & Pujiastuti, N. (2021). Hubungan Pemeriksaan Kehamilan dengan Risiko Kehamilan Menggunakan Skoring Poeji Rochyati pada Ibu Hamil Trimester III. JUMANTIK (Jurnal Ilmiah Penelitian Kesehatan), 6(2), 145. https://doi.org/10.30829/jumantik.v6i2.8424.
Bovkir, R., & Aydinoglu, A. C. (2021). Big urban data visualization approaches within the smart city: Gis-based open-source dashboard example. In International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives (Vol. 46, pp. 125–130). International Society for Photogrammetry and Remote Sensing. https://doi.org/10.5194/isprs-Archives-XLVI-4-W5-2021 125-2021.
Gunawan, G., Henderi, H., & Azizah, N. Model Sistem Informasi Eksekutif Sebagai Pendukung Keputusan di RSUD Dr. Moewardi. Journal Sensi Online ISSN, 2655, 5298.
Ritonga, R. A., & Megayanti, A. (2020). Sistem Informasi Eksekutif Aplikasi Rumah Sakit Berbasis Web & Mobile System (Studi Kasus: Rs. Tugurejo Semarang). JIKA (Jurnal Informatika), 4(3), 98-108.
Nugraha, R. I., Purnami, C. T., Prasetijo, A. B., & Wulandari, N. (2023). Pengembangan Sistem Informasi Ibu Hamil (SIBUMIL-PE) dalam Mendeteksi Kejadian Preeklampsia di Kabupaten Bangkalan. Jurnal Ners, 7(2), 984-992.
Kusuma, F. M., Witanti, W., & Santikarama, I. (2019, October). Sistem Informasi Eksekutif Bidang Pelayanan Medis Pada Rumah Sakit Swasta di Bogor. In Seminar Nasional Teknologi Informasi (Vol. 2, pp. 1-7).
Merethe Magnus, S., & Rudra, A. (2019). Operationally Intuitive Logistics Dashboards for Supply Chain Management in Oil and Gas Based on Human Cognition. Journal of Management Policy and Practice (Vol. 20).
Mohan, A., Abdelrazeq, A., & Hees, F. (2019). Recommendation system in business intelligence solutions for grocery shops: Challenges and perspective. In ACM International Conference Proceeding Series (pp. 53–57). Association for Computing Machinery. https://doi.org/10.1145/3340017.3340030.
Orlovskyi, D., & Kopp, A. (2020). A Business Intelligence Dashboard Design Approach to Improve Data Analytics and Decision Making. Arsana, I. N. (2022). PEMERIKSAAN HEMATOLOGI RUTIN SEBAGAI DETEKSI DINI KESEHATAN IBU HAMIL. JURNAL WIDYA BIOLOGI, 13(01), 20-29.
Setyawan, S. A., Sanjaya, A., & Utomo, W. C. (2023, July). Sistem Informasi Klasifikasi Tingkat Resiko Kehamilan pada Posyandu Ploso. In Prosiding SEMNAS INOTEK (Seminar Nasional Inovasi Teknologi (Vol. 7, No. 2, pp. 701-709).
DOI: https://doi.org/10.35334/jbit.v4i1.4953
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Address: Gedung Dekanat, Fakultas Teknik, Universitas Borneo Tarakan. Jl. Amal Lama No. 1, Tarakan, Kalimantan Utara, Indonesia. Kodepos: 77123. | All publications by JBIT (Jurnal Borneo Informatika dan Teknik Komputer) are licensed under a External Link: |