IN SILICO STUDY OF ESTRAGOLE, APIOLE AND MYRISTICIN FROM Nigella sativa L. AS ANTIFUNGAL

Nurman Nurman, Syarif Hidayat Amrullah, Dirhamzah Dirhamzah

Abstract


Black cumin (Nigella sativa L.) is a plant that is widely used in world medicine. This is due to the large amount of chemical compounds that can have a positive effect on the body. Therefore, this study wants to see the potential use of chemical compounds from black cumin from the phenyl propanoid compounds, namely estragole, apiole and myristicin. Reverse docking study was perfomed using PyMOL Software v1.7.4.5 (Schrodinger), PyRx 0,8 software, SwissAdme Prediction and Discovery study 2019 client. The results of this study indicate that Myristicin can be a new drug candidate for anti-fungal based on the binding affinity value, namely -8.7 and close to the binding affinity value of e (a compound that is widely used as an anti-fungal).


Full Text:

PDF

References


Al-Ghamdi, M. S. (2001). The anti-inflammatory, analgesic and antipyretic activity of Nigella sativa. Journal of Ethnopharmacology, 76(1), 45–48. https://doi.org/10.1016/S0378-8741(01)00216-1

Al-Hader, A., Aqel, M., & Hasan, Z. A. (1993). Hypoglycemic Effects of the Volatile Oil of Nigella sativa Seeds. https://api.semanticscholar.org/CorpusID:85078016

Andrade, T. C. B., De Lima, S. G., Freitas, R. M., Rocha, M. S., Islam, T., Da Silva, T. G., & Militao, G. C. G. (2015). Isolation, characterization and evaluation of antimicrobial and cytotoxic activity of estragole, obtained from the essential oil of Croton zehntneri (Euphorbiaceae). Anais Da Academia Brasileira de Ciencias, 87(1), 173–182. https://doi.org/10.1590/0001-3765201520140111

Aqel, M., & Shaheen, R. (1996). Effects of the volatile oil of Nigella sativa seeds on the uterine smooth muscle of rat and guinea pig. Journal of Ethnopharmacology, 52(1), 23–26. https://doi.org/10.1016/0378-8741(95)01330-X

Chang, X.-L., Liu, L., Wang, N., Chen, Z.-J., & Zhang, C. (2017). The function of high-density lipoprotein and low-density lipoprotein in the maintenance of mouse ovarian steroid balance. Biology of Reproduction, 97(6), 862–872. https://doi.org/10.1093/biolre/iox134

Edris, A. E. (2011). The chemical composition and the content of volatile oil: Potential factors that can contribute to the oxidative stability of Nigella sativa L. crude oil. Journal of Dietary Supplements, 8(1), 34–42. https://doi.org/10.3109/19390211.2010.547242

Friggeri, L., Hargrove, T. Y., Wawrzak, Z., Guengerich, F. P., & Lepesheva, G. I. (2019). Validation of Human Sterol 14alpha-Demethylase (CYP51) Druggability: Structure-Guided Design, Synthesis, and Evaluation of Stoichiometric, Functionally Irreversible Inhibitors. Journal of Medicinal Chemistry, 62(22), 10391–10401. https://doi.org/10.1021/acs.jmedchem.9b01485

Haiyan, G., Lijuan, H., Shaoyu, L., Chen, Z., & Ashraf, M. A. (2016). Antimicrobial, antibiofilm and antitumor activities of essential oil of Agastache rugosa from Xinjiang, China. Saudi Journal of Biological Sciences, 23(4), 524–530. https://doi.org/10.1016/j.sjbs.2016.02.020

Hu, F., Tu, X.-F., Thakur, K., Hu, F., Li, X.-L., Zhang, Y.-S., Zhang, J.-G., & Wei, Z.-J. (2019). Comparison of antifungal activity of essential oils from different plants against three fungi. Food and Chemical Toxicology, 134, 110821. https://doi.org/10.1016/j.fct.2019.110821

Ibrahim, K. M., Naem, R. K., & Abd-sahib, A. S. (2013). Antibacterial Activity of Nutmeg ( Myristica fragrans ) Seed Extracts Against Some Pathogenic Bacteria. 16(2), 188–192.

Ivanov, I. G., Vrancheva, R., Petkova, N. T., Tumbarski, Y. D., Dincheva, I. N., & Badjakov, I. (2019). Phytochemical compounds of anise hyssop (Agastache foeniculum) and antibacterial, antioxidant, and acetylcholinesterase inhibitory properties of its essential oil. Journal of Applied Pharmaceutical Science. https://api.semanticscholar.org/CorpusID:199422346

Karaman, K. (2020). Characterization of Saccharomyces cerevisiae based microcarriers for encapsulation of black cumin seed oil: Stability of thymoquinone and bioactive properties. Food Chemistry, 313(September 2019), 126129. https://doi.org/10.1016/j.foodchem.2019.126129

Khanna, T., Zaidi, F. A., & Dandiya, P. C. (1993). CNS and analgesic studies on Nigella sativa. Fitoterapia, 64(5), 407–410. https://eurekamag.com/research/002/573/002573403.php

Kiralan, M., Ozkan, G., Bayrak, A., & Ramadan, M. F. (2014). Physicochemical properties and stability of black cumin (Nigella sativa) seed oil as affected by different extraction methods. Industrial Crops and Products, 57, 52–58. https://doi.org/10.1016/j.indcrop.2014.03.026

Li, Y., Wang, Y., Kong, W., Yang, S., Luo, J., & Yang, M. (2020). Illicium verum essential oil, a potential natural fumigant in preservation of lotus seeds from fungal contamination. Food and Chemical Toxicology, 141, 111347. https://doi.org/10.1016/j.fct.2020.111347

Monk, B. C., Sagatova, A. A., Hosseini, P., Ruma, Y. N., Wilson, R. K., & Keniya, M. V. (2020). Fungal Lanosterol 14alpha-demethylase: A target for next-generation antifungal design. Biochimica et Biophysica Acta. Proteins and Proteomics, 1868(3), 140206. https://doi.org/10.1016/j.bbapap.2019.02.008

Perrins, N., Howell, S. A., Moore, M., & Bond, R. (2005). Inhibition of the growth in vitro of Trichophyton mentagrophytes, Trichophyton erinacei and Microsporum persicolor by miconazole and chlorhexidine. Veterinary Dermatology, 16(5), 330–333. https://doi.org/10.1111/j.1365-3164.2005.00473.x

Rosa, J. S., Oliveira, L., Sousa, R. M. O. F., Escobar, C. B., & Fernandes-Ferreira, M. (2020). Bioactivity of some Apiaceae essential oils and their constituents against Sitophilus zeamais (Coleoptera: Curculionidae). Bulletin of Entomological Research, 110(3), 406–416. https://doi.org/10.1017/S0007485319000774

Solmaz Mohammed, N., Hilal, O., & Nursen, B. (2017). Pharmacological and Toxicological Properties of Eugenol. Turkish Journal of Pharmaceutical Sciences, 14(2), 201–206.

Sultan, M. T., Butt, M. S., Anjum, F. M., Jamil, A., Akhtar, S., & Nasir, M. (2009). Nutritional profile of indigenous cultivar of black cumin seeds and antioxidant potential of its fixed and essential oil. Pakistan Journal of Botany, 41(3), 1321–1330.

Swamy, S., & Tan, B. K. H. (2000). Cytotoxic and immunopotentiating effects of ethanolic extract of Nigella sativa L. seeds. Journal of Ethnopharmacology, 70 1, 1–7. https://api.semanticscholar.org/CorpusID:36774819

Wei, P.-L., Tu, S.-H., Lien, H.-M., Chen, L.-C., Chen, C.-S., Wu, C.-H., Huang, C.-S., Chang, H.-W., Chang, C.-H., Tseng, H., & Ho, Y.-S. (2012). The in vivo antitumor effects on human COLO 205 cancer cells of the 4,7-dimethoxy-5-(2-propen-1-yl)-1,3-benzodioxole (apiole) derivative of 5-substituted 4,7-dimethoxy-5-methyl-l,3-benzodioxole (SY-1) isolated from the fruiting body of Antrodia camphorate. Journal of Cancer Research and Therapeutics, 8(4), 532–536. https://doi.org/10.4103/0973-1482.106529




DOI: https://doi.org/10.35334/bjbe.v6i1.5173

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Contact Person :

Dewi Retnaningati, S.Pd., M.Sc.
Biology Education Departement

Faculty of Teacher Training and Education
University of Borneo Tarakan
Amal Lama St. No. 1
Tarakan City, North Kalimantan, Indonesia
Mobile Phone (Telp./WA): 082313986329

INDEXING BY:

 Dimensions CrossrefGoogle Scholar Garuda